Sample Selection Models in R: Package sampleSelection

نویسندگان

  • Ott Toomet
  • Arne Henningsen
چکیده

This introduction to the R package sampleSelection is a slightly modified version of Toomet and Henningsen (2008b), published in the Journal of Statistical Software. This paper describes the implementation of Heckman-type sample selection models in R. We discuss the sample selection problem as well as the Heckman solution to it, and argue that although modern econometrics has nonand semiparametric estimation methods in its toolbox, Heckman models are an integral part of the modern applied analysis and econometrics syllabus. We describe the implementation of these models in the package sampleSelection and illustrate the usage of the package on several simulation and real data examples. Our examples demonstrate the effect of exclusion restrictions, identification at infinity and misspecification. We argue that the package can be used both in applied research and teaching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Stable Matchings in R: Package matchingMarkets

R package matchingMarkets implements structural estimators to correct for the sample selection bias from observed outcomes in matching markets. This includes one-sided matching of agents into groups as well as two-sided matching of students to schools. The package also contains algorithms to find stable matchings in the three most common matching problems: the stable roommates problem, the coll...

متن کامل

How Do Young Innovative Companies Innovate?

This paper discusses the determinants of product innovation in young innovative companies (YICs) by looking at in-house and external R&D and at the acquisition of external technology in embodied and disembodied components. These inputoutput relationships are tested on a sample of innovative Italian firms. A sampleselection approach is applied. Results show that in-house R&D is linked to the pro...

متن کامل

SurvJamda: an R package to predict patients' survival and risk assessment using joint analysis of microarray gene expression data

UNLABELLED SurvJamda (Survival prediction by joint analysis of microarray data) is an R package that utilizes joint analysis of microarray gene expression data to predict patients' survival and risk assessment. Joint analysis can be performed by merging datasets or meta-analysis to increase the sample size and to improve survival prognosis. The prognosis performance derived from the combined da...

متن کامل

Genome-wide Regression & Prediction with the BGLR statistical package

Many modern genomic data analysis require implementing regressions where the number of parameters (p, e.g., the number of marker effects) exceeds sample size (n). Implementing these large-p-with-small-n regressions poses several statistical and computational challenges, some of which can be confronted using Bayesian methods. This approach allows integrating various parametric and non-parametric...

متن کامل

Model Selection for Mixture Models Using Perfect Sample

We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009